BMP Inspection & Maintenance Verification Form Using the table below, please indicate which BMP(s) you are responsible for at your site, and the status of operation and maintenance. | BMP Type |
Onsite | Operational (Y/N) | Date of Last
Maintenance | Description of Maintenance * If no maintenance was performed indicate when it will be performed | |----------------------------------|-------------|-------------------|-----------------------------|---| | TC-10 Infiltration Trench | | | | | | TC-11 Infiltration Basin | | | | | | TC-12 Retention/Irrigation | | | | | | TC-20 Wet Ponds | | | | | | TC-21 Constructed Wetlands | | | | | | TC-22 Extended Detention Basin | | | | | | TC-30 Vegetated Swale | | | | | | TC-31 Vegetated Buffer Strip | | | | | | TC-32 Bio-filtration | | | | | | TC-40 Media Filter | | | | | | TC-50 Water Quality Inlet | | | | | | TC-60 Multiple Systems | | | | | | MP-20 Wetland | | | | | | MP-40 Media Filter | | | | | | MP-50 Wet Vault | | | | | | MP-51 Vortex Separator | | | | | | MP-52 Drain Inserts | | | | | | (No fact sheet) Downspout Filter | | | | | | Printed Name of Responsible Party | Title | Signature of Responsible Party | Date | |-----------------------------------|-------|--------------------------------|------| | Daytime Phone | | Email (optional) | | Mailing Address of Responsible Party (Only update if the address on the letter is inaccurate; otherwise, this item may be left blank) # TREATMENT CONTROL BMP DEFINITIONS #### **Infiltration Trench** An infiltration trench is a long, narrow, rock-filled trench with no outlet that receives stormwater runoff. Runoff is stored in the void space between the stones and infiltrates through the bottom and into the soil matrix. Infiltration trenches perform well for removal of fine sediment and associated pollutants. Pretreatment using buffer strips, swales, or detention basins is important for limiting amounts of coarse sediment entering the trench which can clog and render the trench ineffective. #### Infiltration Basin An infiltration basin is a shallow impoundment that is designed to infiltrate stormwater. Infiltration basins use the natural filtering ability of the soil to remove pollutants in stormwater runoff. Infiltration facilities store runoff until it gradually exfiltrates through the soil and eventually into the water table. This practice has high pollutant removal efficiency and can also help recharge groundwater, thus helping to maintain low flows in stream systems. Infiltration basins can be challenging to apply on many sites, however, because of soils requirements. In addition, some studies have shown relatively high failure rates compared with other management practices. ## Retention/Irrigation Retention/irrigation refers to the capture of stormwater runoff in a holding pond and subsequent use of the captured volume for irrigation of landscape of natural pervious areas. This technology is very effective as a stormwater quality practice in that, for the captured water quality volume, it provides virtually no discharge to receiving waters and high stormwater constituent removal efficiencies. This technology mimics natural undeveloped watershed conditions wherein the vast majority of the rainfall volume during smaller rainfall events is infiltrated through the soil profile. Their main advantage over other infiltration technologies is the use of an irrigation system to spread the runoff over a larger area for infiltration. This allows them to be used in areas with low permeability soils. ## **Wet Ponds** Wet ponds (a.k.a. stormwater ponds, retention ponds, wet extended detention ponds) are constructed basins that have a permanent pool of water throughout the year (or at least throughout the wet season) and differ from constructed wetlands primarily in having a greater average depth. Ponds treat incoming stormwater runoff by settling and biological uptake. The primary removal mechanism is settling as stormwater runoff resides in this pool, but pollutant uptake, particularly of nutrients, also occurs to some degree through biological activity in the pond. Wet ponds are among the most widely used stormwater practices. While there are several different versions of the wet pond design, the most common modification is the extended detention wet pond, where storage is provided above the permanent pool in order to detain stormwater runoff and promote settling. The schematic diagram is of an on-line pond that includes detention for larger events, but this is not required in all areas of the state. ## **Constructed Wetland** Constructed wetlands are constructed basins that have a permanent pool of water throughout the year (or at least throughout the wet season) and differ from wet ponds primarily in being shallower and having greater vegetation coverage. #### **Extended Detention Basin** Dry extended detention ponds (a.k.a. dry ponds, extended detention basins, detention ponds, extended detention ponds) are basins whose outlets have been designed to detain the storm water run-off from a water quality design storm for some minimum time (e.g., 48 hours) to allow particles and associated pollutants to settle. Unlike wet ponds, these facilities do not have a large permanent pool. They can also be used to provide flood control by providing additional flood detention storage. ## **Vegetated Swale** Vegetated swales are open, shallow channels with vegetation covering the side slopes and bottom that collect and slowly convey runoff flow to downstream discharge points. They are designed to treat runoff through filtering by the vegetation in the channel, filtering through a subsoil matrix, and/or infiltration into the underlying soils. Swales can be natural or manmade. They trap particulate pollutants (suspended solids and trace metals), promote infiltration, and reduce the flow velocity of stormwater runoff. Vegetated swales can serve as part of a stormwater drainage system and can replace curbs, gutters and storm sewer systems. ## Vegetated Buffer Strip Grassed buffer strips (vegetated filter strips, filter strips, and grassed filters) are vegetated surfaces that are designed to treat sheet flow from adjacent surfaces. Filter strips function by slowing runoff velocities and allowing sediment and other pollutants to settle and by providing some infiltration into underlying soils. Filter strips were originally used as an agricultural treatment practice and have more recently evolved into an urban practice. With proper design and maintenance, filter strips can provide relatively high pollutant removal. In addition, the public views them as landscaped amenities and not as stormwater infrastructure. Consequently, there is little resistance to their use. ## **Bioretention** The bioretention best management practice (BMP) functions as a soil and plant-based filtration device that removes pollutants through a variety of physical, biological, and chemical treatment processes. These facilities normally consist of a grass buffer strip, sand bed, ponding area, organic layer or mulch layer, planting soil, and plants. The runoff's velocity is reduced by passing over or through buffer strip and subsequently distributed evenly along a ponding area. Exfiltration of the stored water in the bioretention area planting soil into the underlying soils occurs over a period of days. #### Media Filter Stormwater media filters are usually two-chambered including a pretreatment settling basin and a filter bed filled with sand or other absorptive filtering media. As stormwater flows into the first chamber, large particles settle out, and then finer particles and other pollutants are removed as stormwater flows through the filtering media in the second chamber. There are a number of design variations including the Austin sand filter, Delaware sand filter, and multi-chambered treatment train (MCTT). ## Water Quality Inlet Water quality inlets (WQIs), also commonly called trapping catch basins, oil/grit separators or oil/water separators, consist of one or more chambers that promote sedimentation of coarse materials and separation of free oil (as opposed to emulsified or dissolved oil) from stormwater. Some WQIs also contain screens to help retain larger or floating debris, and many of the newer designs also include a coalescing unit that helps promote oil/water separation. A typical WQI consists of a sedimentation chamber, an oil separation chamber, and a discharge chamber. These devices are appropriate for capturing hydrocarbon spills, but provide very marginal sediment removal and are not very effective for treatment of stormwater runoff. WQIs typically capture only the first portion of runoff for treatment and are generally used for pretreatment before discharging to other best management practices (BMPs). ## **Multiple Systems** A multiple treatment system uses two or more BMPs in series. Some examples of multiple systems include: settling basin combined with a sand filter; settling basin or biofilter combined with an infiltration basin or trench; extended detention zone on a wet pond. #### Wetland A manufactured wetland is similar to public domain stormwater wetlands. In a manufactured wetland, gravel substrate and subsurface flow of the stormwater through the root systems force the vegetation to remove nutrients and dissolved pollutants from the stormwater. Only one company currently manufactures a preengineered wetland: It consists of a standard module, about 9.5 feet in diameter and 4 feet in height. The module is constructed of recycled polyethylene. The number of units is varied to meet the design volume of the site. ## Media Filter Stormwater media filters are usually two-chambered including a pretreatment settling basin and a filter bed filled with sand or other absorptive filtering media. As stormwater flows into the first chamber, large particles settle out, and then finer particles and other pollutants are removed as stormwater flows through the filtering media in the second chamber. There are currently three manufacturers of stormwater filter systems. Two are similar in that they use cartridges of a standard size. The cartridges are placed in vaults; the number of cartridges a function of the design flow rate. The water flows laterally (horizontally) into the cartridge to a centerwell, then downward to an underdrain system. The third product is a flatbed filter, similar in appearance to sand filters. ## Wet Vault A wet vault is a vault with a permanent water pool, generally 3 to 5 feet deep. The vault may also have a constricted outlet that causes a temporary rise of the water level (i.e., extended detention) during each storm. This live volume generally drains within 12 to 48 hours after the end of each storm. ## **Vortex Separator** Vortex separators: (alternatively, swirl concentrators) are gravity separators, and in principle are essentially wet vaults. The difference from wet vaults, however, is that the vortex separator is round, rather than rectangular, and the water moves in a centrifugal fashion before exiting. By having the water move in a circular fashion, rather than a straight line as is the case with a standard wet vault, it is possible to obtain significant removal of suspended sediments and attached pollutants with less space. Vortex separators were originally developed for combined sewer overflows (CSOs), where it is used primarily to remove coarse inorganic solids. Vortex separation has been adapted to stormwater treatment by several manufacturers. ## **Drain Inserts** Drain inserts are manufactured filters or fabric placed in a drop inlet to remove sediment and debris. There are a multitude of inserts of various shapes and configurations, typically falling into one of three different groups: socks, boxes, and trays. The sock consists of a fabric, usually constructed of polypropylene. The fabric may be attached to a frame or the grate of the inlet holds the sock. Socks are meant for vertical (drop) inlets. Boxes are constructed of plastic or wire mesh. Typically a polypropylene "bag" is placed in the wire mesh box. The bag takes the form of the box. Most box products are one box; that is, the setting area and filtration through media occur in the same box. Some products consist of one or more trays or mesh grates. The trays may hold different types of media. Filtration media vary by manufacturer. Types include polypropylene, porous polymer, treated cellulose, and activated carbon.